Workshop on Asynchronous Many-Task Systems
2026

Venue:
Garching near Munich, Germany

February 16-18, 2026

This workshop is sponsored by

o Max Planck Computing & Data Facility

Technical University of Munich

Oak Ridge National Laboratory (ORNL)

AMD Lenovo

i

Abstract

As our compute capacity grows, science simulations are not only becoming bigger,
but more complex. Simulations are carried out at multiple scales and using multiple
kinds of physics at once. Boundaries are irregular, grids are irregular, computational
domains can be dynamic and complex. In such scenarios, the ideal way to parallelize
often cannot be statically determined. At the same time, hardware is becoming
more heterogeneous and difficult to program. Increasingly, scientists are turning
to asynchronous, dynamic parallelism in order to make the best use of increasingly
challenging hardware. As a result, numerous frameworks, platforms, and specialized
languages have sprung up to answer this need.

The objectives of this workshop are to bring together experts in asynchronous
many-task frameworks, developers of science codes, performance experts, and hard-
ware vendors to discuss the state-of-the-art techniques needed to program, analyze,
benchmark, and profile these codes to achieve maximum performance possible from
modern machines. This workshop will promote a dialogue between these commu-
nities, and help identify challenges and opportunities for advancement in all the
disciplines they represent.

Organizing committee
 Patrick Diehl, Los Alamos National Laboratory (USA)
o Martin Schulz, Technical University of Munich (Germany)

o Erwin Laure, Max Planck Computing and Data Facility (Germany)

o Markus Rampp, Max Planck Computing and Data Facility (Germany)

Scientific committee
o Alex Aiken, Stanford (USA)
« Erwin Laure, Max Planck Computing & Data Facility (Germany)
o Christoph Junghans, Los Alamos National Laboratory (USA)
« Bryce Adelstein Lelbach, NVIDIA (USA)
o Laxmikant V. Kale, University of Illinois at Urbana-Champaign (USA)
e Brad Chamberlain, HPE and University of Washington (USA)
« John D. Leidel, Tactical Computing Laboratories (USA)

1ii

Technical program chair

Patrick Diehl, Los Alamos National Laboratory (USA)
Martin Schulz, Technical University of Munich (Germany)
Erwin Laure, Max Planck Computing and Data Facility (Germany)

Markus Rampp, Max Planck Computing and Data Facility (Germany)

Technical program

Kevin Huck, University of Oregon (USA)

Dirk Pfliiger, University of Stuttgart (Germany)

Huda Ibeid, Intel

Dirk Pleiter, KTH Royal Institute of Technology (Sweden)

Keita Teranishi, Sandia National Laboratories (USA)

Gregor DaiSS, University of Stuttgart (Germany)

Najoude Nader, Louisiana State University (USA)

Hartmut Kaiser, Louisiana State University (USA)

Steven R. Brandt, Louisiana State University (USA)

Narasinga Rao Miniskar, Oak Ridge National Laboratory (USA)
Markus Rampp, Max Planck Computing and Data Facility (Germany)
Sumathi Lakshmiranganatha, Los Alamos National Laboratory (USA)
Nikunj Gupta, Amazon (USA)

Jonas Posner, University of Kassel (Germany)

Chris Taylor, Tactical Computing Laboratories (USA)

Aurelien Bouteiller, University of Tennessee, Knoxville (USA)

Joseph Schuchart, University of Tennessee, Knoxville (USA)

Rabab Alomairy, Massachusetts Institute of Technology (USA)

Julian Samaroo, Massachusetts Institute of Technology (USA)

Logistics

Friederike Neu, Max Planck Computing and Data Facility (Germany)

iv

Welcome Address

Greetings, With great pleasure I send a warm welcome to all participants of the

Workshop on Asynchronous Many-Task Systems and Applications, scheduled from
February 16 to 18, 2026 at the Research Campus Garching near Munich. The event
is hosted by the Max Planck Computing and Data Facility together with the Tech-
nical University Munich and the Leibniz Supercomputing center.

I would like to express my appreciation for the exceptional efforts of the work-
shop co-organizers, Dr. Markus Rampp, Prof. Martin Schulz and in particular Dr.
Patrick Diehl. The objectives of this workshop are to bring together experts in asyn-
chronous many-task frameworks, developers of science codes, performance experts,
and hardware vendors to discuss the state-of-the-art techniques needed to program,
analyze, benchmark, and profile these codes to achieve maximum performance pos-
sible from modern machines. This workshop will promote a dialogue between these
communities, and help identify challenges and opportunities for advancement in var-
ious disciplines.

A special thanks goes to our distinguished keynote speakers: Dr. Rosa Badia from
the Barcelona Supercomputing Center, Dr. Nick Brown from the Edinburgh Parallel
Computing Centre, and Dr. Michael Klemm from AMD. Their expertise in the field
promises valuable insights, and we are grateful for their willingness to share them
with us. I would also like to thank our financial sponsers, Lenovo and AMD.
Finally, I extend my gratitude to all participants. I sincerely hope that you find
enjoyment and benefit from the unique discussions and sessions planned over the
next two and a half days.

With best wishes,

Prof. Dr. Erwin Laure Max Planck Computing and Data Facility & Technical
University Munich

vi

Contents

Welcome Address v
Session Chairs 1
Talks 3
Keynote 1: Fortran and the OpenMP API in a Modern GPU World
(Michael Klemm) 3
Concurrent Scheduling of High-Level Parallel Programs on Multi-GPU Sys-
tems (Peter Thoman) 4
Accelerating GPRat: Asynchronous, Task-Based GPU Acceleration for
Gaussian Process Regression with HPX (Alezander Strack) 5
Leveraging PaRSEC for Task-Based Heterogeneous Computing in Python
and Julia (Qiao Zhang)o 6
Evaluating MPI and OpenMP for global task dependencies across pro-
cesses. (Jose Gracia) 7
Exploring Performance-Productivity Trade-offs in AMT Runtimes: A Task
Bench Study of Itoyori, and MPI (Jonas Posner) 8
Managing Explicit Communications Within a Sequential Task Flow Paradigm
(Nicolas Brieuc) 9
Keynote 2: Task-based programming models: tradeoffs between granular-
ity and computing platforms (Rosa Badia). 10

Towards Dynamic Resource Management with Charm-++ (Dominik Huber) 11

Finding Conservation Laws of Large Dynamical Systems with Tasks and
Futures: A Case Study in Utilizing Dynamic Data Dependencies

(Rudiger Nather) 12
Using C++ Generators in Dataflow Broadcast (Joseph Schuchart) 13
From Promts to Performance: Evaluating LLMs for Task-based Parallel

Code Generation (Linus Batel) 14

First Experiments to Evaluate the Relevance of Task-based Runtime Sys-
tems to Implement Large Language Model Applications (Lionel Eyraud-

Dubois) 15
Silent Data Corruption Protection through Efficient Task Replication (Mia Re-

17 16
Keynote 3: Asychronous tasks: the cornerstone of targeting HPC on

emerging architectures (Nick Brown) 17

vii

erformance Analysis of Task-Based Parallelism for 3D Acoustic Full Wave-
form Inversion on HPC Infrastructure (Vanderlei Munhoz Pereira
Filho) 18
Multiresolution Analysis using Data-Flow Programming (Nilesh Chaturvedi) 19
Abstract communicators for task based runtime systems (Nicolas Ducarton) 20
Merging Parameterized Task Graphs in PaRSEC through Recursive JDF

Composition (Zhuowei Gu) 21
Additional information 23
Addresses L 23
Author Index 25

viii

Session Chairs

o Keynote 1, Patrick Diehl

o Session 1 (Wed 10:30 — 12:00), Vicenc Beltran Querol
o Session 2 (Wed 1:00 — 2:30), Alex Elwood

o Keynote 2, Erwin Laure

 Session 3 (Thu 10:30 to 12:00), Jonas Posner

e Session 4 (Thu 1:00 to 2:30), Mia Reitz

o Session 5 (Thu 3:00 to 4:30), Christoph Junghans

o Keynote 3, Martin Schulz

« Session 6 (Fr 10:30 to 12:30), Thomas Herault

Talks

Keynote 1: Fortran and the OpenMP API in a Modern
GPU World

Michael Klemm
AMD

Modern day supercomputers are massively parallel, heterogeneous systems that em-
ploy accelerators (mostly GPU) to provide additional compute and memory perfor-
mance to applications. While C/C++, but also Python, gain traction in the HPC
domain, Fortran continues to have a large developer base with new high-performance
code written every day. In this world, the OpenMP Application Programming Inter-
face is one of the key components to support application developers and their need
to write portable and performant code for such systems, especially in the context of
large Fortran codes. We will review the evolution of the OpenMP API from its early
days in 1997 to the present day and how it supports large scale, heterogeneous ap-
plications. We will recap how OpenMP initially supported portable multi-threading
(for Fortran) and how it was extended to support task parallelism, single-instruction
multiple-data, and heterogeneous computing. We will also shortly touch on future
plans for the OpenMP API versions 6.1 and 7.0. The review of OpenMP features
will be embedded in the journey of AMD to build the first and second exascale
system, based on AMD EPYC(tm) Processors and AMD Instinct(tm) accelerators
as well as a modern Fortran compiler based on LLVM Flang. Buckle up and enjoy
the ride!

16"

9:00 AM-10:00 AM

Concurrent Scheduling of High-Level Parallel Programs on
16'" Multi-GPU Systems

10:30 AM-11:00 AM
Peter Thoman

University of Innsbruck

Parallel programming models can encourage performance portability by moving the
responsibility for work assignment and data distribution from the programmer to
a runtime system. However, analyzing the resulting implicit memory allocations,
coherence operations and their interdependencies can quickly introduce delays into
the latency-sensitive execution pipeline of a distributed-memory application.

In this paper, we show how graph-based intermediate representations help mov-
ing such scheduling work out of the critical path. In the context of SYCL programs
distributed onto accelerator clusters, we introduce instruction graph scheduling, a
method based a low-level representation that preserves full concurrency between
memory management, data transfers, MPI peer-to-peer communication and kernel
invocations.

Through integration within the Celerity runtime, we demonstrate how instruction-
graph scheduling enables a system architecture that performs this analysis concur-
rently with execution. Using a scheduler lookahead mechanism, we further detect
changing access patterns to optimize memory allocation in the presence of virtualized
buffers. We show the effectiveness of our method through strong-scaling benchmarks
with multiple applications on up to 128 GPUs.

Accelerating GPRat: Asynchronous, Task-Based GPU
Acceleration for Gaussian Process Regression with HPX

Alexander Strack
University of Stuttgart

Gaussian processes are a widely used regression tool, but exact computation is lim-
ited by the cubic complexity of standard solvers. To address this challenge, we
extend the GPRat library by incorporating GPU acceleration. GPRat is an HPX-
based framework that combines task-based parallelism, an intuitive Python API,
and portability across x86, ARM, and RISC-V. We implement tiled algorithms for
the Gaussian process prediction pipeline using optimized CUDA libraries, thereby
exploiting massive parallelism for linear algebra operations. Performance is eval-
uated on a dual-socket AMD EPYC 9274F system with an NVIDIA A30 GPU.
Results show that GPU acceleration provides speedups for datasets which exceed
128 training samples. Comparisons with GPyTorch and GPflow demonstrate that
GPRat achieves superior prediction performance on CPUs and remains competi-
tive on GPUs. Furthermore, combining HPX with multiple CUDA streams allows
GPRat to match, and in some cases slightly surpass, native cuSolver implementa-
tions.

16th

11:00 AM-11:30 AM

16th

11:30 AM-12:00 PM

Leveraging PaRSEC for Task-Based Heterogeneous
Computing in Python and Julia

Qiao Zhang

Saint Louis University

We present Python and Julia bindings for the PARSEC task-based runtime system,
enabling high-level access to its efficient and portable execution model on distributed
heterogeneous architectures. The Python interface (PyPaRSEC) integrates seam-
lessly with NumPy and PyTorch, while the Julia interface (PaRSEC.jl) leverages
Julias multiple dispatch and composability to express dynamic task graphs natu-
rally. Both interfaces expose PaRSECs core abstractionsincluding data manage-
ment, task creation, and device schedulingallowing domain scientists to construct
parallel workflows easily across diverse architectures. We evaluate these bindings
using Cholesky factorization and general matrixmatrix multiplication (GEMM) on
multi-core CPUs, NVIDIA GPUs, and AMD GPUs. The results show that the
Python and Julia interfaces achieve performance comparable to native C implemen-
tations, with minimal overhead and strong scalability across devices. This work
demonstrates that PaRSECs high-performance runtime can be effectively leveraged
from productive, high-level languages, bridging the gap between scientific prototyp-
ing and exascale execution.

Evaluating MPI and OpenMP for global task dependencies
across processes.

Jose Gracia
High Performance Computing Center Stuttgart, University of Stuttgart

MPI and OpenMP are still considered the work horses of high performance com-
puting. OpenMP tasking allows to schedule interdependent tasks of various gran-
ularities within a process thereby avoiding process-global synchronisation which
potentially increases system utilisation and efficiency. On the other hand, MPI’s
asynchronous communication or one-sided communication primitives allow to or-
chestrate communication such as to overlap with computation whenever possible.
However, in practise it is surprisingly complex to encapsulate MPI communication
in dependent tasks without risking deadlocks. In this paper we explore the potential
of combining MPI continuations with OpenMP’s detached tasks to construct depen-
dencies between tasks across processes. MPI continuations are a proposed extension
to MPI which in a nutshell replaces user code polling or waiting on request handles
with the MPI library notifying completion through user-provided callbacks. The
detach clause on OpenMP task construct allows to block otherwise ready tasks until
user-code signals the occurrence of an event such as completion of communication.
In combination, these techniques facilitate writing HPC applications with minimal
synchronisation both within and across processes.

16th

1:00 PM-1:30 PM

16th

1:30 PM-2:00 PM

Exploring Performance-Productivity Trade-offs in AMT
Runtimes: A Task Bench Study of Itoyori, and MPI

Jonas Posner
Fulda University of Applied Sciences

Asynchronous Many-Task (AMT) runtimes offer a productive alternative to the
established Message Passing Interface (MPI). However, the diverse landscape of
AMTs makes fair comparisons challenging. The Task Bench benchmark, proposed
by Slaughter et al., addresses this by providing a common framework to evaluate
parallel programming systems.

This work integrates two recent cluster AMTs, Itoyori and ItoyoriFBC, into Task
Bench for the first time, enabling a comprehensive evaluation against the well-known
MPI and HPX. Itoyori employs a PGAS-style global memory and RDMA-based work
stealing. ItoyoriFBC extends Itoyori with future-based synchronization.

We evaluate these systems in terms of both performance and programmer pro-
ductivity. Performance is assessed across various configurations including compute-
bound kernels, weak scaling, and both imbalanced and communication-intensive
patterns. Performance is quantified using application efficiency, i.e., the percentage
of maximum performance achieved, and the Minimum Effective Task Granularity
(METG), i.e., the smallest task duration before runtime overheads dominate. Pro-
grammer productivity is quantified using lines of code (LOC) and the number of
library constructs (NLC).

Our results reveal strengths and weaknesses of each system. MPI delivers the
highest efficiency in well-balanced, communication-light configurations at the cost of
verbose, low-level code. HPX sustains high, stable efficiency under imbalance over
varying node counts. However, HPX surprisingly ranks last in our productivity met-
rics, indicating that AMTs may not always improve productivity over MPI. Itoyori
demonstrates the highest efficiency on communication-intensive configurations and
leads in programmer productivity. ItoyoriFBC is slightly less efficient than Itoy-
ori, yet its future-based synchronization promises high programmer productivity for
irregular workloads.

Managing Explicit Communications Within a Sequential
Task Flow Paradigm

Nicolas Brieuc

Inria

Task-based runtime systems that follow the Sequential Task Flow paradigm rely on
reconstructing a dependency graph from a sequential description of tasks. In the
StarPU framework, which targets distributed-memory systems, each MPI process
inserts tasks in sequence, specifying how they access data (read, write, or modify).
From this description, StarPU infers the global Directed Acyclic Graph (DAG) of
tasks and automatically determines the communications needed between processes.
This model offers simplicity and portability, but gives the programmer little control
over the placement and behavior of communications—sometimes at the expense of
performance.

In this work, we introduce a new routine, starpu_mpi_data_ cpy, which allows
programmers to explicitly insert data transfers into the DAG. By specifying source
and destination handles on the corresponding processes, applications can directly
receive data in place, thus avoiding the additional memory allocations normally
introduced by implicit STF communications. This mechanism provides an effec-
tive way to improve efficiency in communication-intensive regions, while still being
integrated into the task-based execution model.

Explicitly inserting communications, however, breaks the pure STF flow and
risks introducing subtle anti-dependencies. We describe the mechanisms that StarPU
implements to reconcile these explicit operations with the inferred DAG, preserving
correctness despite the asynchronous nature of execution. We then evaluate the
benefits of this approach on representative distributed workloads, showing that the
additional control enabled by starpu_mpi data cpy can translate into substantial
performance improvements when used judiciously.

16th

2:00 PM-2:30 PM

17th

9:00 AM-10:00 AM

Keynote 2: Task-based programming models: tradeoffs
between granularity and computing platforms

Rosa Badia
BSC-CNS

Task-based programming defends that provides a simple programming approach
that leverages the computing infrastructure and reduces global synchronizations.
Since its inception has been extensively applied to different computing platforms.
In particular, at BSC we have developed instances of programming models for so
diverse infrastructures as the grid, multicore or the Cell processor, clusters and large
supercomputers, to the digital continuum or hybrid classic-quantum approaches.
However, is the programming model so simple? What the end-users say about
it? What are the issues that each computing platform pose? Is an autonomous
runtime taking all decisions appreciated by end-users? How can we debug or improve
the performance of distributed applications? The talk will present a perspective
overview of these topics and our views for the next future.

10

Towards Dynamic Resource Management with Charm-+-+
Dominik Huber

Technical University Munich

Dynamic Resource Management (DRM) can increase scheduling flexibility, benefit-
ing both global system performance and individual job execution.

However, DRM requires adaptations of application codes to support dynamic
changes of assigned resources during runtime. In this context, higher-level pro-
gramming models, such as task-based programming models, could lower the bar
for application developers to support DRM by hiding the complexities of dynamic
process management and data redistribution.

In this work, we describe and evaluate our approach to integrate the task-
based, object-oriented parallel programming model Charm++ into the generic Dy-
namic Processes with PSets (DPP) design. To this end, we extend the adaptive
Charm++ features with a PMIx-based process manager, acting as a proxy between
the Charm++ runtime and the dynamic resource manager. We evaluate our im-
plementation on the SuperMUC-Ng cluster on up to 16 nodes, demonstrating its
applicability in certain DRM scenarios.

11

17th

10:30 AM-11:00 AM

Finding Conservation Laws of Large Dynamical Systems
with Tasks and Futures: A Case Study in Utilizing
17t Dynamic Data Dependencies

11:00 AM-11:30 AM
Riidiger Nather

Universitat Kassel

Conservation laws provide valuable insights into the structure of dynamical systems
that arise in physics and other fields. Recent research has shown that machine
learning approaches, such as neural networks, can discover conservation laws from
numerical data. Nevertheless, these approaches are still challenging to scale to large
dynamical systems due to memory, data, and processing requirements.

A recently introduced technique based on kernel regression has addressed the
high data requirements. Nevertheless, it lacks a high-performance implementation
and still demands substantial memory for storing high-dimensional, dense matrices.
Those memory requirements can be managed, for example, by utilizing hierarchical
matrix representations, which also introduce a high degree of parallelism. However,
those representations come at the cost of a (controllable) numerical approximation
error and complex dependency patterns.

This work presents a task-based parallel algorithm for discovering conservation
laws in dynamical systems that addresses all three aspects of the scaling problem.
The algorithm leverages the kernel regression approach, exploits the parallelism in-
troduced by hierarchical matrices, and uses futures, which are placeholders for asyn-
chronously computed values, to manage dependencies. Weak-scaling experiments on
an implementation of this algorithm in an extended version of the Taskflow runtime
system demonstrate its efficiency in discovering conservation laws in systems with
hundreds of dimensions within a reasonable timeframe.

12

Using C++ Generators in Dataflow Broadcast

Joseph Schuchart
Stony Brook University

Template Task Graph TTG) is a multiparadigm programming model built from
task flowgraphs. Each task in TTG produces data for a single consumer (send)
or multiple consumers (broadcast), possibly along multiple flowgraph edges. Until
now identifiers of broadcast consumers had to be encoded as explicit dynamically-
computed sequences, which is crucial for composing data-dependent algorithms. In
this work, we split the task discovery from the main task body and introduce the use
of generators available since C++23 to generate the successor list. This improves
composability by allowing us to implement multiple broadcast strategies using the
on-demand key generation.

13

17th

11:30 AM-12:00 PM

17th

1:00 PM-1:30 PM

From Promts to Performance: Evaluating LLMs for
Task-based Parallel Code (Generation

Linus Batel
University of Stuttgart

Large Language Models (LLMs) show strong abilities in code generation, but their
skill in creating efficient parallel programs is less studied. This paper explores how
LLMs generate task-based parallel code from three kinds of input: natural language
problem descriptions, pseudo-code, and sequential reference implementations. We
focus on three programming paradigms: OpenMP Tasking, C++ standard paral-
lelism, and the High Performance ParalleX (HPX) runtime. Each offers different
levels of abstraction and control for task execution. We evaluate LLM-generated
solutions for correctness, efficiency, and scalability, and compare them to manually
written code. Our results reveal both strengths and weaknesses in task decompo-
sition, dependency handling, and load balancing. Finally, we discuss what these
findings mean for future LLM-assisted development in high-performance and scien-
tific computing.

14

First Experiments to Evaluate the Relevance of Task-based
Runtime Systems to Implement Large Language Model
Applications

Lionel Eyraud-Dubois

Inria

During the last decade, a new kind of computation-intensive and complex applica-
tion has emerged: Large Language Models (LLM). These applications require the
computing power offered by HPC clusters and are complex to implement efficiently:
several kinds of parallelisms are possible, limited available memory is often a major
constraint, accelerators (GPUs, TPUs, NPUs, ...) need to schedule data transfers
and computations, the problem size imposes distributed executions, ... All these
challenges are already well-known by developers of the first-class applications run-
ning on HPC clusters: linear algebra, numerical simulation, ... Addressing these
challenges has led to the development of task-based runtime systems, to ease the
writing of HPC applications by providing an abstraction of the machine and its effi-
cient programming. Despite task-based runtime systems being used for a long time
now for classic HPC applications, they are generally not used to implement LLM
applications. In this paper, we present our first experiments to analyze the rele-
vance of using task-based runtime systems for LLM applications (both training and
inference). We describe our implementation of a small LLM with StarPU, discuss
the different choices we had to make, evaluate performance and summarize helpful
and missing features of StarPU to implement an LLM.

15

17th

1:30 PM-2:00 PM

17th

2:00 PM-2:30 PM

Silent Data Corruption Protection through Efficient Task
Replication

Mia Reitz

University of Kassel

The trend of increasing cluster sizes of supercomputers leads to a growing suscep-
tibility to Silent Data Corruption (SDC) that can invalidate program results. A
common strategy for SDC protection is replication, where the computation is re-
peated, and the correct result is determined as the one that is the same in at least two
different computations. Applying replication to cluster Asynchronous Many-Task
(AMT) runtimes is challenging due to dynamic task spawning and work stealing,
which complicate the identification of replicated tasks.

To address the challenge, this paper introduces a novel replication scheme that
detects and corrects SDCs for two classes of task cooperation: nested fork-join (NFJ)
and future-based cooperation (FBC). Our approach replicates the computation and,
upon a mismatch in the final result, traverses the task dependency graph top-down
beginning at the final result to identify the frontier between correct and corrupted
task results. Recovery is then performed by recomputing all tasks above the frontier,
while the results of correct subtrees below it are reused.

We demonstrate our implementation within the ItoyoriFBC cluster AMT run-
time. Our results show that the time to identify the affected tasks and reprocess
them is negligible.

16

Keynote 3: Asychronous tasks: the cornerstone of targeting
HPC on emerging architectures

Nick Brown
EPCC

Whilst emerging architectures, such as the Cerebras WSE, were initially designed
with AI/ML workloads in mind their underlying capability results in great poten-
tial for traditional HPC too. However, a major challenge is in the programming of
these technologies not-least because approaching these architectures as traditional
imperative/BSP-style is a poor fit and results in slow performance. In this talk I
will describe work targeting these architectures for existing HPC workloads, writ-
ten in Fortran, with programmer’s codes requiring minimal modifications. I will
describe how we see that the target execution model naturally follows that of highly
asynchronous many-tasks, and how we can automate via MLIR the mapping to this
paradigm from the imperative view.

17

18th

9:00 AM-10:00 AM

18th

10:30 AM-11:00 AM

erformance Analysis of Task-Based Parallelism for 3D
Acoustic Full Waveform Inversion on HPC Infrastructure

Vanderlei Munhoz Pereira Filho
INRIA

Full Waveform Inversion (FWI) is a computationally intensive geophysical method
for estimating subsurface properties by iteratively minimizing the mismatch between
observed and simulated seismic data. Traditional implementations rely on data-
parallel approaches using MPI and OpenMP, distributing work through loop-level
parallelism over seismic shots and spatial grids. This work presents a fundamen-
tally different approach: a novel implementation of 3D acoustic FWI using StarPU,
a task-based runtime system that decomposes computation into fine-grained tasks
with explicit dependencies and provides dynamic, data-aware scheduling across het-
erogeneous CPU/GPU resources. We benchmark our task-based implementation
against two established academic software packages employing conventional data-
parallel paradigms: Mamute, a C++ framework using MPI for distributed mem-
ory parallelism and OpenMP for shared memory with custom workload balancing
strategies, and simwave, a Python/C package implementing straightforward loop
parallelism through OpenMP and OpenACC compiler directives. Performance ex-
periments are conducted on (the) Grid’5000 Platform using standard synthetic 3D
velocity models. This comparison directly contrasts task-based runtime systems
against traditional loop-parallel approaches for large-scale geophysical inverse prob-
lems, analyzing execution time, scalability, load balancing efficiency, and imple-
mentation complexity. Our results provide insights into how modern task-based
programming models perform relative to established data-parallel techniques for
computationally demanding seismic imaging applications.

18

Multiresolution Analysis using Data-Flow Programming

Nilesh Chaturvedi
Stony Brook University

Multiresolution analysis (MRA) is widely used across scientific disciplines for its
ability to represent both local and global data features effectively. Representations
in MRA are tree-based with levels corresponding to the scale at which the function
is represented. The operations that construct these representations and act on them
are irregular and data-dependent and require traversal of the tree. The Template
Task Graph (TTG) programming model enables data-dependent task discovery and
can represent large-scale task graphs compactly by instantiating only those tasks
for which inputs are available. We introduce a framework that implements MRA
using TTG. Our work explores the representation of functions, operators, and the
application of operators on functions in a multiresolution multiwavelet basis. Our
construction tackles a variety of feasibility, efficiency, and numerical challenges in
higher dimensions.

19

18th

11:00 AM-11:30 AM

18th

11:30 AM-12:00 PM

Abstract communicators for task based runtime systems

Nicolas Ducarton

University of Bordeaux

Task-based systems are outstanding at exploiting massively parallel and hetero-
geneous architectures. They are used for ever longer running problems, and on
ever larger supercomputers. This leads to a heightened risk of failure, making fault-
tolerance capabilities for such systems a desirable addition. To this end, StarPU has
started including checkpoint-restart mechanisms directly inside the runtime system.
But to tolerate actual failures, a distributed memory communication paradigm that
enables the writing of fault-tolerant applications must be used. The MPI Forum
has recently started including the User-Level Failure Mitigation (ULFM) extension
in the MPI Standard precisely to achieve this goal. ULFM defines a set of routines
that help support operations after failures, and the behavior of MPI when failures
occur. The communication engine, and the task-based runtime system must thus be
adapted to this specification. In particular, in order to recover the full communica-
tion capabilities, it becomes necessary to dynamically replace communicators (which
are distributed MPI objects that are required by most MPI routines) that include
failed processes by renewed communicators. To this end, in this work we intro-
duce abstract communicators, a mechanism to replace MPI communicators during
execution, including failed communicators. This enables the application to con-
tinue submission without changing its communicators, even when a failure occurs.
The runtime system re-orders processes without the application noticing. We then
present implementation challenges raised by this mechanism, notably on the process
of handling requests on old communicators, and switching to replacements while still
accepting new requests submitted by the application on its original communicators.
We validate our approach with a working implementation in StarPU.

20

Merging Parameterized Task Graphs in PaRSEC through
Recursive JDF Composition

Zhuowei Gu

Saint Louis University

The Parameterized Task Graph (PTG) interface in the PaRSEC runtime system pro-
vides a powerful mechanism to express scalable, parameterized task dependencies
for distributed heterogeneous computing. However, as applications become increas-
ingly complex and hierarchical, developers often need to compose or merge multiple
JDF (Job Data Flow) descriptionseach representing a subgraphinto a single coher-
ent PTG, a process that is currently manual, error-prone, and difficult to generalize.
In this work, we introduce a Python- and Al-assisted framework to automate the
merge-to-JDF process in PaRSEC. The framework recursively analyzes two or more
JDFs, identifies overlapping dataflows, and merges their task and data definitions
into a unified PTG while preserving correctness and dependency semantics. We
demonstrate this approach on representative PTG applications, including multi-
stage solvers and AI models such as neural networks, convolutional networks, and
Transformers, showing that the automated merge framework substantially reduces
development effort while maintaining runtime efficiency.

21

18th

1:00 PM-1:30 PM

22

Additional information

Addresses

Workshop venue

Max Planck Computing & Data Facility on Research Campus Garching, GieSSen-
bachstrasse 2 85748 Garching near Munich, Germany. Access via Isarstrasse. Lec-
ture hall on ground level next to the main entrance to building D2.

Hotel

Courtyard Hotel Munich Garching Walter-von-Dyk-Str. 12 85748 Garching near
Munich, Germany

Banquet

Bayerische Staatsbrauerei Weihenstephan, Alte Akademie 2, 85354 Freising, Ger-
many

23

24

Author Index

Badia Rosa, 10 Klemm Michael, 3
Batel Linus, 14
Brieuc Nicolas, 9
Brown Nick, 17

Munhoz Pereira Filho Vanderlei, 18

Nather Riidiger, 12

Chaturvedi Nilesh, 19 Posner Jonas. 8

Ducarton Nicolas, 20 Reitz Mia, 16

Eyraud-Dubois Lionel, 15 Schuchart Joseph, 13

Strack Alexander, 5
Gracia Jose, 7

Gu Zhuowei, 21 Thoman Peter, 4

Huber Dominik, 11 Zhang Qiao, 6

national” license.

This work is licensed under a Creative Commons @ @ @
“Attribution-NonCommercial-NoDerivatives 4.0 Inter- @

25

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

	Welcome Address
	Session Chairs
	Talks
	Keynote 1: Fortran and the OpenMP API in a Modern GPU World (Michael Klemm)
	Concurrent Scheduling of High-Level Parallel Programs on Multi-GPU Systems (Peter Thoman)
	Accelerating GPRat: Asynchronous, Task-Based GPU Acceleration for Gaussian Process Regression with HPX (Alexander Strack)
	Leveraging PaRSEC for Task-Based Heterogeneous Computing in Python and Julia (Qiao Zhang)
	Evaluating MPI and OpenMP for global task dependencies across processes. (Jose Gracia)
	Exploring Performance-Productivity Trade-offs in AMT Runtimes: A Task Bench Study of Itoyori, and MPI (Jonas Posner)
	Managing Explicit Communications Within a Sequential Task Flow Paradigm (Nicolas Brieuc)
	Keynote 2: Task-based programming models: tradeoffs between granularity and computing platforms (Rosa Badia)
	Towards Dynamic Resource Management with Charm++ (Dominik Huber)
	Finding Conservation Laws of Large Dynamical Systems with Tasks and Futures: A Case Study in Utilizing Dynamic Data Dependencies (Rüdiger Nather)
	Using C++ Generators in Dataflow Broadcast (Joseph Schuchart)
	From Promts to Performance: Evaluating LLMs for Task-based Parallel Code Generation (Linus Batel)
	First Experiments to Evaluate the Relevance of Task-based Runtime Systems to Implement Large Language Model Applications (Lionel Eyraud-Dubois)
	Silent Data Corruption Protection through Efficient Task Replication (Mia Reitz)
	Keynote 3: Asychronous tasks: the cornerstone of targeting HPC on emerging architectures (Nick Brown)
	erformance Analysis of Task-Based Parallelism for 3D Acoustic Full Waveform Inversion on HPC Infrastructure (Vanderlei Munhoz Pereira Filho)
	Multiresolution Analysis using Data-Flow Programming (Nilesh Chaturvedi)
	Abstract communicators for task based runtime systems (Nicolas Ducarton)
	Merging Parameterized Task Graphs in PaRSEC through Recursive JDF Composition (Zhuowei Gu)

	Additional information
	Addresses

	Author Index

